Affective Engineering for Mud Wall Texture using Self-organizing Maps
نویسنده
چکیده
Affective/Kansei engineering is used to analyze subjective responses to a streetscape plan for a historic townscape. The Chofu area in Shimonoseki was chosen for the research. The appearance of the streetscape is evaluated based on actual photographs using a traditional semantic differential method. Guidelines are often formulated to promote landscaping plans in historic towns; it is especially important to formulate color guidelines so as to unify the colors in an area undergoing change. The guidelines must be formulated according to regional requirements since color planning is strongly influenced by the local identity or brand. The affective engineering proposed in this study reveals representative design elements arising from the regional characteristics of the area and its people. The Chofu area is famous for its streetscapes of mud walls. The pilot investigation using a self-organizing map validated the evaluation of mud wall colors.
منابع مشابه
Landforms identification using neural network-self organizing map and SRTM data
During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...
متن کاملTexture Synthesis Using Image Pyramids and Self-Organizing Maps
Markov Random Field is a very known model for the generation of textures. However, the estimation of its parameter results quite difficult in many cases. In this article a new algorithm for synthesis of textures is proposed, based on image pyramids and self-organizing maps. This procedure avoids the explicit computation of its parameters. Preliminary results support the appropriateness of this ...
متن کاملSteel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps
Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...
متن کاملObject Recovery Using Hierarchical Self-Organizing Maps
The self-organizing map’s unsupervised clustering property, is known for classifying high dimensional data sets into clusters that have similar features. Using this property and arranging self-organizing maps into hierarchies, we demonstrate in this paper that legacy code can be potentially broken down into suggested classes using hierarchical self-organizing maps. This is in conjunction with i...
متن کاملGreen Product Consumers Segmentation Using Self-Organizing Maps in Iran
This study aims to segment the market based on demographical, psychological, and behavioral variables, and seeks to investigate their relationship with green consumer behavior. In this research, self-organizing maps are used to segment and to determine the features of green consumer behavior. This was a survey type of research study in which eight variables were selected from the demographical,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014